XML - статьи


           

Как видно из рисунка, все


Как видно из рисунка, все узлы дерева помимо корня являются листами. Для формирования структурной схемы, необходимо выполнить следующие действия:

  • Множество E формируется следующим образом: для каждого узла типа "элемент", мы создаем отдельный тип элемента
  • Множество A формируется следующим образом: для каждого узла типа "атрибут", мы создаем отдельный тип атрибута. Доменный тип состоит из одного значения - значения данного узла в документе
  • Множество T формируется следующим образом: для каждого текстового узла в документе мы создаем отдельный домен, состоящий только из одного значения
  • Отображение a задается по следующим правилам: для любого типа элемента e - множество a(e) состоит из типов атрибутов, соответствующих атрибутам того элемента XML, который задавал e.
  • Отображение e задается по следующим правилам: для любого типа элемента e - p(e) - это выражение вида (e0,..,en) где ei это либо тип элемента, либо домен, задаваемый i-м дочерним узлом того элемента XML, который задавал e.
  • Тип элемента r (корневой тип) задается корневым элементом дерева XML.


  • Легко убедиться, что исходный документ удовлетворяет данной схеме. Также любой XML документ, удовлетворяющий данной схеме, совпадает с исходным документом. То есть схема является тривиальной. Индуктивный переход осуществляется следующим образом. Пусть утверждение доказано для документа, максимальная глубина которого равна n. Пусть у нас есть документ XML глубины n+1. В терминах XML модели, его можно представить в виде дерева глубины n+1. Рассмотрим множество поддеревьев, с корнями в дочерних узлах корневого документа исходного дерева. Их максимальная глубина не превышает n. По предположению индукции им ставится в соответствие тривиальные схемы. Общая схема формируется путем объединения множеств E,T,A каждой из этих тривиальных схем и продлением отображений a и p . Затем мы формируем еще один тип элемента r, соответствующий корню исходного XML документа, и продляем отображения a и p на него. Отображение a(r) возвращает множество атрибутов корневого элемента, а p(r)=(r0,..,rn), где ri - корневой тип элемента тривиальной схемы, порожденный i-м узлом.

    Способ создания тривиальной схемы, использованный в утверждении 2, задает инъективное отображение множества документов XML на множество схем. Этот результат используется в работе [15] для реализации алгоритмов трансляции выражений алгебры управления структурными схемами в выражения языка запроса к данным XML. Легко показать, что все домены из множества T - доменных типов тривиальной схемы содержат в точности одно значение.

    Лемма 1 (Достаточное условие тривиальности) Любая схема S=(T,E,A,p,a,r) такая, что для любого типа элементов e, регулярное выражение p(e) имеет вид r1,..,rnn, где ri есть символы базового алфавита, является тривиальной или пустой схемы.


    Содержание  Назад  Вперед





    Forekc.ru
    Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий